Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Linking neurobiology to relatively stable individual differences in cognition, emotion, motivation, and behavior can require large sample sizes to yield replicable results. Given the nature of between-person research, sample sizes at least in the hundreds are likely to be necessary in most neuroimaging studies of individual differences, regardless of whether they are investigating the whole brain or more focal hypotheses. However, the appropriate sample size depends on the expected effect size. Therefore, we propose four strategies to increase effect sizes in neuroimaging research, which may help to enable the detection of replicable between-person effects in samples in the hundreds rather than the thousands: (1) theoretical matching between neuroimaging tasks and behavioral constructs of interest; (2) increasing the reliability of both neural and psychological measurement; (3) individualization of measures for each participant; and (4) using multivariate approaches with cross-validation instead of univariate approaches. We discuss challenges associated with these methods and highlight strategies for improvements that will help the field to move toward a more robust and accessible neuroscience of individual differences.more » « lessFree, publicly-accessible full text available January 1, 2026
-
When the environment changes, vision adapts to maintain accurate perception. For repeatedly encountered environments, learning to adjust more rapidly would be beneficial, but past work remains inconclusive. We tested if the visual system can learn such visual mode switching for a strongly color-tinted environment, where adaptation causes the dominant hue to fade over time. Eleven observers wore bright red glasses for five 1-hr periods per day, for 5 days. Color adaptation was measured by asking observers to identify ‘unique yellow’, appearing neither reddish nor greenish. As expected, the world appeared less and less reddish during the 1-hr periods of glasses wear. Critically, across days the world also appeared significantly less reddish immediately upon donning the glasses. These results indicate that the visual system learned to rapidly adjust to the reddish environment, switching modes to stabilize color vision. Mode switching likely provides a general strategy to optimize perceptual processes.more » « less
An official website of the United States government
